organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(2-Hydroxyethyl)-1'-methyl-4'-(naphthalen-1-yl)-1",2",3",4"-tetrahydrodispiro[indoline-3,2'-pyrrolidine-3',2"naphthalene]-2,1"-dione

S. Selvanayagam,^a* B. Sridhar,^b P. Saravanan^c and R. **Raghunathan**^c

^aDepartment of Physics, Kalasalingam University, Krishnankoil 626 126, India, ^bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ^cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India Correspondence e-mail: s_selvanayagam@rediffmail.com

Received 13 February 2012; accepted 14 February 2012

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.130; data-to-parameter ratio = 17.7.

In the title compound, $C_{33}H_{30}N_2O_3$, the pyrrolidine ring adopts an envelope conformation in which the H atom attached the an ortho-C atom deviates from the plane, whereas the cyclohexanone ring in the tetrahydronaphthalene fused-ring system adopts a sofa conformation. The oxindoline ring system is almost perpendicular with respect to the mean plane of the pyrrolidine ring, with a dihedral angle of 89.0 $(1)^{\circ}$. Five intramolecular C-H···O close contacts are observed. In the crystal, molecules associate via O-H···O hydrogen bonds, forming $R_2^2(14)$ dimers. In addition, there are weak $C-H\cdots\pi$ interactions.

Related literature

For general background to pyrrolidine derivatives, see: Sundar et al. (2011); Crooks & Sommerville (1982); Stylianakis et al. (2003). For a related structure, see: Selvanayagam, Ravikumar et al. (2011); Selvanayagam, Sridhar et al. (2011). For ringpuckering parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental

Crystal data

a	TT
$C_{33}H_{30}N_2O_3$	V = 2566.2 (7) A ³
$M_r = 502.59$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 12.0236 (18) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 14.054 (2) Å	$T = 292 { m K}$
c = 15.950 (2) Å	0.22 \times 0.20 \times 0.18 mm
$\beta = 107.796 \ (2)^{\circ}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer 29561 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ wR(F²) = 0.130 345 parameters H-atom parameters constrained S = 1.02 $\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min}$ = -0.16 e Å⁻³ 6100 reflections

6100 independent reflections

 $R_{\rm int} = 0.021$

4956 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C10-C15 benzene ring.

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C26—H26···O1	0.93	2.54	3.198 (2)	128
$C24 - H24A \cdots O2$	0.97	2.42	3.098 (2)	127
C14−H14···O1	0.93	2.59	3.394 (2)	145
$C2 - H2 \cdot \cdot \cdot O1$	0.98	2.21	2.764 (2)	115
$C1 - H1B \cdots O2$	0.97	2.40	3.020 (2)	121
$O3-H3\cdots O2^{i}$	0.82	2.03	2.830(1)	164
$C20-H20\cdots Cg1^{ii}$	0.93	2.71	3.603 (2)	161

Symmetry codes: (i) -x, -y, -z; (ii) -x, -y, -z + 1.

Data collection: SMART (Bruker, 2001): cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009)'; software used to prepare material for publication: SHELXL97 and PLATON.

SS acknowledges the Department of Science and Technology (DST), India, for providing computing facilities under the DST Fast Track Scheme. SS also thanks the Vice Chancellor and management of the Kalasalingam University, Krishnankoil, for their support and encouragement.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5819).

References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Crooks, P. A. & Sommerville, R. (1982). J. Pharm. Sci. 71, 291-294.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Selvanayagam, S., Ravikumar, K., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, 0751.
- Selvanayagam, S., Sridhar, B., Saravanan, P. & Raghunathan, R. (2011). Acta Crvst. E67. 01678-01679.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
 Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699–1703.
- Sundar, J. K., Rajesh, S. M., Sivamani, J., Perumal, S. & Natarajan, S. (2011). *Chem. Cent. J.* **5**, 45.

supplementary materials

Acta Cryst. (2012). E68, o800-o801 [doi:10.1107/S1600536812006617]

1-(2-Hydroxyethyl)-1'-methyl-4'-(naphthalen-1-yl)-1'',2'',3'',4''-tetrahydrodispiro[indoline-3,2'-pyrrolidine-3',2''-naphthalene]-2,1''-dione

S. Selvanayagam, B. Sridhar, P. Saravanan and R. Raghunathan

Comment

Spiro-pyrrolidine ring system is a structural motif in many biologically important and pharmacologically relevant alkaloids. These derivatives are used as antimicrobial and antitumour agents (Sundar *et al.*, 2011). These derivatives possess analgesic (Crooks & Sommerville, 1982) and anti-influenza virus (Stylianakis *et al.*, 2003) activities. In view of these importance and continuation of our work on the crystal structure analyis of spiro-pyrrolidine derivatives, we have undertaken the crystal structure determination of the title compound, and the results are presented here.

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. The geometry of pyrrolidine, tetrahydro naphthalene and naphthyl group systems are comparable with the related reported structure (Selvanayagam, Ravikumar *et al.*, 2011; Selvanayagam, Sridhar *et al.*, 2011).

The sum of the angles at N1 of the pyrrolidine ring $[335.5^{\circ}]$ and N2 of the oxindole ring $[359.7^{\circ}]$ are in accordance with sp³ and sp² hybridizations. The short contacts H1B···H7 (2.2 Å) and H2···H14 (1.9 Å) result in substantial widening of the C6—C7—C8 and C14—C15—C6 bond angles $[121.8 (2)^{\circ}$ and $123.7 (1)^{\circ}$, respectively].

Pyrrolidine ring adopts an envelope conformation, with puckering parameters $q_2 = 0.431$ (1) Å and $\varphi = 11.8$ (1) °, and with atom C1 deviating 0.606 (1) Å from the least-squares plane passing through the remaining four atoms (N1/C2-C4) of that ring (Cremer & Pople, 1975). The cyclohexanone ring in the tetrahydro naphthaline ring system has a sofa conformation with the lowest asymmetry parameters of $\Delta C_2(C3-C24) = 0.085$ (1)° (Nardelli, 1983). The naphthalene ring system is oriented with a dihedral angles of 88.5 (1) and 41.8 (1)°, respectively with respect to the best plane of pyrrolidine ring and oxindole ring systems.

The molecular structure is influenced by an intramolecular C—H···O close contacts. Atom O1 acts as a trifurcated acceptor for three intramolecular C—H···O contacts. In the molecular packing, O—H···O hydrogen bonds involving atoms O3 and O2 link inversion-related molecules to form R_2^2 (14) graph-set dimer (Fig. 2 and Table 1). In addition to this intermolecular C—H··· π interactions are formed such that atom H20 is 2.71 Å from the centroid of the phenyl ring (C10-C15) at (-x,-y,1-z), with C20—H20··· centroid angle of 161° and C20··· centroid distance of 3.603 (2) Å (Fig. 3).

Experimental

To a mixture of 1-(2-hydroxyethyl)indoline-2,3-dione (1mmol), sarcosine (1mmol) and 2-naphthalidene-1,2,3,4-tetrahydronaphthalene-1-one (1mmol) was added and heated under reflux in methanol (20ml) until the disappearance of the starting materials as evidenced by TLC. The solvent was removed under vacuo and the crude product was subjected to column chromatography using petroleum ether-ethyl acetate eluent. Single crystals were grown by slow evaporation from methanol.

Refinement

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H distances of 0.93-0.98 Å and O—H distance of 0.82 Å, and Uiso(H) = $1.5U_{eq}(C)$ for methyl H and Uiso(H) = $1.2U_{eq}(C \text{ or } O)$ for all other H atoms.

Computing details

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009)'; software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level

Figure 2

Molecular packing of the title compound, viewed down the *b* axis; H-bonds are shown as dashed lines forms a $R_2^2(14)$ dimers in unit cell. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted

Figure 3

Molecular packing of the title compound showing C—H \cdots π interactions in unit cell. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted

1-(2-Hydroxyethyl)-1'-methyl-4'-(naphthalen-1-yl)-1'',2'',3'',4''- tetrahydrodispiro[indoline-3,2'-pyrrolidine-3',2''-naphthalene]- 2,1''-dione

Crystal data	
$C_{33}H_{30}N_2O_3$	F(000) = 1064
$M_r = 502.59$	$D_{\rm x} = 1.301 {\rm Mg m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 18685 reflections
a = 12.0236 (18) Å	$\theta = 2.2 - 27.8^{\circ}$
b = 14.054 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 15.950 (2) Å	T = 292 K
$\beta = 107.796 \ (2)^{\circ}$	Block, colourless
$V = 2566.2 (7) Å^3$	$0.22 \times 0.20 \times 0.18 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans 29561 measured reflections 6100 independent reflections <i>Refinement</i>	4956 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.021$ $\theta_{\text{max}} = 28.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$ $h = -15 \rightarrow 15$ $k = -18 \rightarrow 18$ $l = -21 \rightarrow 20$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.130$	neighbouring sites
S = 1.02	H-atom parameters constrained
6100 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0763P)^2 + 0.3393P]$
345 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.27$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.16$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.10384 (8)	0.22419 (7)	0.19534 (6)	0.0402 (2)	
N2	0.00850 (9)	-0.00310(7)	0.19134 (7)	0.0459 (2)	
01	0.30700 (9)	0.24467 (6)	0.39617 (6)	0.0558 (2)	
O2	0.11658 (9)	0.03889 (7)	0.10210 (6)	0.0555 (2)	
03	-0.19054 (11)	0.03227 (8)	0.03809 (7)	0.0652 (3)	
H3	-0.1606	0.0206	-0.0006	0.098*	
C1	0.19263 (10)	0.24133 (9)	0.15200 (8)	0.0434 (3)	
H1A	0.1927	0.3073	0.1341	0.052*	
H1B	0.1812	0.2007	0.1009	0.052*	
C2	0.30466 (10)	0.21616 (8)	0.22418 (7)	0.0399 (2)	
H2	0.3234	0.2710	0.2640	0.048*	
C3	0.26925 (9)	0.13307 (7)	0.27700 (7)	0.0365 (2)	
C4	0.13143 (10)	0.13071 (8)	0.23768 (7)	0.0369 (2)	
C5	-0.01552 (11)	0.23600 (10)	0.13839 (9)	0.0523 (3)	
H5A	-0.0279	0.3010	0.1194	0.078*	
H5B	-0.0689	0.2195	0.1702	0.078*	
H5C	-0.0286	0.1953	0.0880	0.078*	
C6	0.41155 (11)	0.19724 (9)	0.19625 (8)	0.0449 (3)	

C7	0.40481 (14)	0.14455 (11)	0.12339 (10)	0.0597 (4)
H7	0.3324	0.1218	0.0894	0.072*
C8	0.50454 (17)	0.12346 (14)	0.09794 (12)	0.0758 (5)
H8	0.4970	0.0891	0.0467	0.091*
С9	0.61114 (15)	0.15324 (14)	0.14808 (13)	0.0746 (5)
H9	0.6767	0.1379	0.1315	0.090*
C10	0.62429 (12)	0.20652 (11)	0.22432 (11)	0.0603 (4)
C11	0.73543 (14)	0.23652 (14)	0.27924 (15)	0.0771 (5)
H11	0.8019	0.2193	0.2646	0.093*
C12	0.74729 (15)	0.28936 (15)	0.35201 (15)	0.0834 (6)
H12	0.8212	0.3078	0.3870	0.100*
C13	0.65024(15)	0.31585 (13)	0.37427(13)	0.0769 (5)
H13	0.6588	0.3537	0.4237	0.092*
C14	0.54088 (13)	0.28741 (10)	0.32481 (10)	0.0588(4)
H14	0.4766	0.3055	0.3419	0.071*
C15	0 52372 (11)	0 23149 (9)	0.24881 (9)	0.0480(3)
C16	0.32572(11) 0.30264(10)	0.16184 (8)	0.27488(7)	0.0397(2)
C17	0.30201(10) 0.32705(10)	0.08631(9)	0.37100(7) 0.44286(7)	0.0397(2) 0.0412(3)
C18	0.32703(10) 0.35333(11)	0.00031(9) 0.11383(10)	0.44200(7) 0.53084(8)	0.0412(3)
H18	0.3584	0.1781	0.5453	0.060*
C19	0.37171 (13)	0.04706 (12)	0.59598 (9)	0.000
U1) H10	0.3896	0.04700 (12)	0.55558 (5)	0.072*
C20	0.36361 (13)	-0.0038	0.0343 0.57435 (10)	0.072
U20	0.30301 (13)	-0.0034	0.57455 (10)	0.0043 (4)
C21	0.3742 0.34002 (13)	-0.07520(10)	0.0184 0.48835 (10)	0.077°
U21	0.34002 (13)	-0.1407	0.48833 (10)	0.0574 (5)
C22	0.3303	-0.00045(0)	0.4749 0.42105 (8)	0.009°
C22	0.32130(10) 0.20842(12)	-0.00945(9)	0.42103(8) 0.22751(0)	0.0443(3)
	0.29645 (12)	-0.03940(8)	0.32731 (9)	0.0494 (3)
П23А	0.2100	-0.0300	0.3029	0.039*
П23Б	0.3442	-0.0938	0.3230	0.039°
C24	0.32839 (11)	0.05774(8)	0.2/1/9 (8)	0.0433 (3)
H24A	0.3033	0.0168	0.2109	0.052*
H24B	0.4124	0.0409	0.2907	0.052°
C25	0.06134(10)	0.10957 (8)	0.29967 (7)	0.0388(2)
C26	0.05570(11)	0.15438 (9)	0.37485 (8)	0.0462 (3)
H26	0.0992	0.2090	0.3950	0.055*
C27	-0.01597 (13)	0.11681 (11)	0.42021 (9)	0.0578(4)
H27	-0.0198	0.1463	0.4/15	0.069*
C28	-0.08122 (13)	0.03680 (13)	0.39040 (10)	0.0634 (4)
H28	-0.1276	0.0121	0.4224	0.076*
C29	-0.0/937 (12)	-0.00782 (11)	0.31387 (9)	0.0574 (3)
H29	-0.1248	-0.0614	0.2929	0.069*
C30	-0.00761 (10)	0.03006 (8)	0.26956 (8)	0.0435 (3)
C31	0.08823 (10)	0.05013 (8)	0.16833 (8)	0.0420 (3)
C32	-0.05995 (13)	-0.07827 (10)	0.13719 (10)	0.0569 (3)
H32A	-0.0609	-0.1330	0.1740	0.068*
H32B	-0.0230	-0.0974	0.0936	0.068*
C33	-0.18359 (13)	-0.04818 (11)	0.09099 (10)	0.0604 (4)
H33A	-0.2245	-0.1003	0.0547	0.072*

						/
H33B	-0.2227	-0	.0349	0.1347	0.072*	
Atomic a	lisplacement paran	neters ($Å^2$)				
	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
N1	0.0400 (5)	0.0397 (5)	0.0409 (5)	0.0025 (4)	0.0125 (4)	0.0074 (4)
N2	0.0489 (6)	0.0408 (5)	0.0435 (5)	-0.0068 (4)	0.0073 (4)	-0.0023 (4)
01	0.0814 (7)	0.0387 (5)	0.0462 (5)	-0.0043 (4)	0.0181 (5)	-0.0082(4)
O2	0.0625 (6)	0.0640 (6)	0.0414 (5)	-0.0040 (4)	0.0178 (4)	-0.0132 (4)
O3	0.0724 (7)	0.0672 (6)	0.0546 (6)	0.0100 (5)	0.0171 (5)	0.0018 (5)
C1	0.0446 (6)	0.0444 (6)	0.0425 (6)	0.0008 (5)	0.0152 (5)	0.0075 (5)
C2	0.0406 (6)	0.0385 (6)	0.0409 (6)	-0.0016 (4)	0.0131 (5)	0.0007 (4)
C3	0.0405 (6)	0.0340 (5)	0.0346 (5)	0.0005 (4)	0.0106 (4)	-0.0017 (4)
C4	0.0413 (6)	0.0353 (5)	0.0341 (5)	-0.0008 (4)	0.0113 (4)	0.0003 (4)
C5	0.0432 (7)	0.0575 (8)	0.0532 (7)	0.0032 (5)	0.0103 (5)	0.0145 (6)
C6	0.0449 (6)	0.0457 (6)	0.0461 (6)	0.0018 (5)	0.0170 (5)	0.0061 (5)
C7	0.0603 (8)	0.0694 (9)	0.0528 (7)	0.0048 (7)	0.0223 (6)	-0.0030 (6)
C8	0.0860 (12)	0.0850 (12)	0.0696 (10)	0.0159 (9)	0.0435 (9)	-0.0009 (9)
C9	0.0644 (10)	0.0850 (11)	0.0888 (12)	0.0199 (8)	0.0447 (9)	0.0227 (10)
C10	0.0489 (7)	0.0606 (8)	0.0762 (10)	0.0076 (6)	0.0264 (7)	0.0291 (7)
C11	0.0430 (8)	0.0840 (12)	0.1049 (14)	0.0056 (7)	0.0236 (8)	0.0441 (11)
C12	0.0495 (9)	0.0860 (13)	0.1007 (15)	-0.0155 (8)	0.0022 (9)	0.0262 (11)
C13	0.0629 (10)	0.0701 (10)	0.0830 (11)	-0.0189 (8)	0.0007 (8)	0.0044 (9)
C14	0.0500(7)	0.0546 (8)	0.0660 (9)	-0.0086 (6)	0.0090 (6)	0.0026 (6)
C15	0.0430 (6)	0.0447 (6)	0.0568 (7)	0.0013 (5)	0.0159 (5)	0.0167 (5)
C16	0.0415 (6)	0.0378 (6)	0.0387 (5)	-0.0004 (4)	0.0104 (4)	-0.0034 (4)
C17	0.0386 (6)	0.0454 (6)	0.0377 (5)	0.0024 (5)	0.0088 (4)	0.0012 (5)
C18	0.0482 (7)	0.0594 (8)	0.0405 (6)	0.0038 (6)	0.0125 (5)	-0.0024 (5)
C19	0.0564 (8)	0.0838 (11)	0.0390 (6)	0.0105 (7)	0.0133 (6)	0.0085 (6)
C20	0.0606 (9)	0.0761 (10)	0.0555 (8)	0.0123 (7)	0.0167 (7)	0.0265 (7)
C21	0.0583 (8)	0.0502 (7)	0.0614 (8)	0.0060 (6)	0.0149 (6)	0.0141 (6)
C22	0.0409 (6)	0.0430 (6)	0.0469 (6)	0.0035 (5)	0.0093 (5)	0.0056 (5)
C23	0.0580 (7)	0.0339 (6)	0.0504 (7)	0.0049 (5)	0.0080 (6)	-0.0015 (5)
C24	0.0481 (6)	0.0388 (6)	0.0409 (6)	0.0058 (5)	0.0104 (5)	-0.0050 (4)
C25	0.0412 (6)	0.0378 (5)	0.0373 (5)	0.0030 (4)	0.0119 (4)	0.0058 (4)
C26	0.0499 (7)	0.0474 (6)	0.0417 (6)	0.0076 (5)	0.0147 (5)	0.0030 (5)
C27	0.0603 (8)	0.0749 (10)	0.0432 (7)	0.0141 (7)	0.0234 (6)	0.0107 (6)
C28	0.0541 (8)	0.0854 (11)	0.0550 (8)	0.0013 (7)	0.0229 (6)	0.0247 (7)
C29	0.0529 (7)	0.0608 (8)	0.0564 (8)	-0.0097 (6)	0.0134 (6)	0.0168 (6)
C30	0.0434 (6)	0.0431 (6)	0.0414 (6)	-0.0001 (5)	0.0092 (5)	0.0085 (5)
C31	0.0429 (6)	0.0414 (6)	0.0386 (6)	-0.0001 (5)	0.0079 (5)	-0.0026 (4)
C32	0.0621 (8)	0.0406 (7)	0.0592 (8)	-0.0100 (6)	0.0053 (6)	-0.0056 (6)
C33	0.0583 (8)	0.0640 (9)	0.0517 (7)	-0.0152 (6)	0.0063 (6)	-0.0021 (6)

Geometric parameters (Å, °)

N1—C5	1.4545 (16)	C12—H12	0.9300
N1—C1	1.4582 (15)	C13—C14	1.370 (2)
N1—C4	1.4681 (14)	С13—Н13	0.9300
N2—C31	1.3522 (16)	C14—C15	1.406 (2)

supplementary materials

N2—C30	1.3996 (16)	C14—H14	0.9300
N2—C32	1.4508 (16)	C16—C17	1.4812 (16)
01	1.2091 (14)	C17—C22	1.3865 (17)
02-C31	1.2154 (15)	C17—C18	1.3957 (16)
03-033	1 3979 (18)	C18 - C19	1 3669 (19)
03—H3	0.8200	C18—H18	0.9300
C1 - C2	1 5222 (16)	C19-C20	1.374(2)
C1—H1A	0.9700	C19—H19	0.9300
C1_H1B	0.9700	C_{20}	1.372(2)
C_2	1 5069 (17)	C_{20} H_{20}	0.9300
$C_2 = C_3$	1.5009(17) 1.5729(15)	C_{20} C_{21} C_{22}	1 3014 (18)
$C_2 = C_3$	0.0800	$C_{21} = C_{22}$	0.0200
C_2 C_2	0.9600	$C_{21} = C_{21}$	0.9300
C_{3} C_{24}	1.5508(15) 1.5422(15)	C22—C23	1.4920 (18)
$C_3 = C_{10}$	1.5425 (15)	C23—C24	1.5142 (18)
	1.5828 (16)	C23—H23A	0.9700
C4—C25	1.5118 (15)	С23—Н23В	0.9700
C4—C31	1.5572 (15)	C24—H24A	0.9700
С5—Н5А	0.9600	C24—H24B	0.9700
С5—Н5В	0.9600	C25—C26	1.3743 (17)
С5—Н5С	0.9600	C25—C30	1.3868 (17)
C6—C7	1.3593 (19)	C26—C27	1.3876 (19)
C6—C15	1.4361 (18)	C26—H26	0.9300
С7—С8	1.410 (2)	C27—C28	1.370 (2)
С7—Н7	0.9300	С27—Н27	0.9300
C8—C9	1.353 (3)	C28—C29	1.378 (2)
С8—Н8	0.9300	C28—H28	0.9300
C9—C10	1.395 (3)	C29—C30	1.3784 (18)
С9—Н9	0.9300	С29—Н29	0.9300
C10—C11	1.420 (2)	C32—C33	1.504 (2)
C10—C15	1.4236 (19)	С32—Н32А	0.9700
C11—C12	1.348 (3)	C32—H32B	0.9700
C11—H11	0.9300	С33—Н33А	0.9700
C12—C13	1.371 (3)	С33—Н33В	0.9700
C5—N1—C1	114.25 (9)	O1—C16—C17	120.16 (10)
C5—N1—C4	115.50 (9)	O1—C16—C3	120.81 (10)
C1—N1—C4	105.70 (9)	C17—C16—C3	119.02 (9)
$C_{31} - N_{2} - C_{30}$	111.13 (10)	C_{22} C17 C18	120.00(11)
$C_{31} = N_{2} = C_{32}$	124 16 (11)	C^{22} C^{17} C^{16}	120.00(11) 121.90(10)
C_{30} N2 C_{32}	124 42 (11)	C18 - C17 - C16	121.90(10) 118.09(11)
$C_{33} = C_{33} = H_3$	109 5	C19-C18-C17	120.55(13)
N1 - C1 - C2	102.12 (9)	C19 - C18 - H18	110 7
N1 = C1 = H1A	102.12 (9)	$C_{17} = C_{18} = H_{18}$	119.7
$C_2 = C_1 = H_1 A$	111.5	$C_{17} = C_{10} = C_{10}$	119.7 110.55(12)
	111.5	C18 - C19 - C20	119.33 (13)
$\begin{array}{ccc} \mathbf{N} \mathbf{I} & - \mathbf{U} \mathbf{I} & - \mathbf{\Pi} \mathbf{I} \mathbf{D} \\ \mathbf{C} 2 & \mathbf{C} 1 & \mathbf{U} 1 \mathbf{D} \end{array}$	111.3	$C_{10} = C_{10} = U_{10}$	120.2
	111.5	$C_{20} = C_{19} = H_{19}$	120.2
	109.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.00 (13)
	11/.06 (10)	$C_{21} - C_{20} - H_{20}$	119.7
C6-C2-C3	114.98 (9)	C19—C20—H20	119.7

C1—C2—C3	104.82 (9)	C20—C21—C22	120.73 (14)
С6—С2—Н2	106.4	C20—C21—H21	119.6
C1—C2—H2	106.4	C22—C21—H21	119.6
С3—С2—Н2	106.4	C17—C22—C21	118.48 (12)
C24—C3—C16	107.63 (9)	C17—C22—C23	120.34 (11)
C24—C3—C2	114.47 (9)	C21—C22—C23	121.17 (12)
C16—C3—C2	108.55 (9)	C22—C23—C24	112.28 (10)
C24—C3—C4	114.06 (9)	С22—С23—Н23А	109.1
C16—C3—C4	108.89 (9)	C24—C23—H23A	109.1
C2—C3—C4	103.02 (8)	С22—С23—Н23В	109.1
N1—C4—C25	112.58 (9)	C24—C23—H23B	109.1
N1-C4-C31	110.16 (9)	H23A—C23—H23B	107.9
C25—C4—C31	100.96 (9)	C23—C24—C3	113.42 (10)
N1—C4—C3	103.03 (8)	C23—C24—H24A	108.9
C25—C4—C3	118.06 (9)	C3—C24—H24A	108.9
C31—C4—C3	112.22 (9)	C23—C24—H24B	108.9
N1—C5—H5A	109.5	C3—C24—H24B	108.9
N1—C5—H5B	109.5	H24A—C24—H24B	107.7
H5A—C5—H5B	109.5	C26—C25—C30	119.19 (11)
N1—C5—H5C	109.5	C26—C25—C4	131.81 (11)
H5A—C5—H5C	109.5	C30—C25—C4	109.00 (10)
H5B—C5—H5C	109.5	C25—C26—C27	118.99 (13)
C7—C6—C15	118.79 (12)	C25—C26—H26	120.5
C7—C6—C2	121.02 (12)	C27—C26—H26	120.5
C15—C6—C2	120.13 (11)	C28—C27—C26	120.81 (13)
C6—C7—C8	121.79 (15)	С28—С27—Н27	119.6
С6—С7—Н7	119.1	С26—С27—Н27	119.6
С8—С7—Н7	119.1	C27—C28—C29	121.20 (13)
C9—C8—C7	120.01 (16)	C27—C28—H28	119.4
С9—С8—Н8	120.0	C29—C28—H28	119.4
С7—С8—Н8	120.0	C30—C29—C28	117.41 (13)
C8—C9—C10	121.04 (14)	С30—С29—Н29	121.3
С8—С9—Н9	119.5	С28—С29—Н29	121.3
С10—С9—Н9	119.5	C29—C30—C25	122.36 (12)
C9—C10—C11	122.12 (15)	C29—C30—N2	127.39 (12)
C9—C10—C15	119.47 (14)	C25—C30—N2	110.25 (10)
C11—C10—C15	118.41 (17)	O2—C31—N2	125.07 (11)
C12—C11—C10	121.79 (16)	O2—C31—C4	126.21 (11)
C12—C11—H11	119.1	N2—C31—C4	108.64 (10)
C10-C11-H11	119.1	N2—C32—C33	112.50 (12)
C11—C12—C13	119.87 (16)	N2—C32—H32A	109.1
C11—C12—H12	120.1	С33—С32—Н32А	109.1
C13—C12—H12	120.1	N2—C32—H32B	109.1
C12—C13—C14	120.98 (19)	С33—С32—Н32В	109.1
C12—C13—H13	119.5	H32A—C32—H32B	107.8
C14—C13—H13	119.5	O3—C33—C32	113.01 (12)
C13—C14—C15	121.44 (16)	O3—C33—H33A	109.0
C13—C14—H14	119.3	С32—С33—Н33А	109.0
C15—C14—H14	119.3	O3—C33—H33B	109.0

C14—C15—C10	117.47 (13)	С32—С33—Н33В	109.0
C14—C15—C6	123.69 (12)	H33A—C33—H33B	107.8
C10—C15—C6	118.82 (13)		
C5—N1—C1—C2	-175.59 (10)	O1—C16—C17—C22	179.21 (12)
C4—N1—C1—C2	-47.49 (11)	C3—C16—C17—C22	0.48 (16)
N1-C1-C2-C6	162.32 (10)	01-C16-C17-C18	0.81 (17)
N1 - C1 - C2 - C3	33.58 (11)	C3—C16—C17—C18	-177.92(10)
C6-C2-C3-C24	-14.77 (14)	C_{22} C_{17} C_{18} C_{19}	-1.21(19)
C1-C2-C3-C24	115.21 (10)	C_{16} C_{17} C_{18} C_{19}	177.22 (12)
C6-C2-C3-C16	105 48 (11)	C_{17} C_{18} C_{19} C_{20}	-0.3(2)
C1 - C2 - C3 - C16	-12454(10)	C_{18} C_{19} C_{20} C_{21}	16(2)
C6-C2-C3-C4	-13917(10)	C_{19} C_{20} C_{21} C_{22}	-1.3(2)
$C_1 - C_2 - C_3 - C_4$	-9.19(11)	$C_{18} = C_{17} = C_{22} = C_{21}^{-1}$	1.9(2)
$C_{1} = C_{2} = C_{3} = C_{4}$	-63 23 (13)	$C_{16} - C_{17} - C_{22} - C_{21}$	-176.88(11)
C_{3} N1 C_{4} C_{25}	160.41(0)	$C_{10} = C_{17} = C_{22} = C_{21}$	-177.44(11)
$C_{1} = N_{1} = C_{4} = C_{23}$	109.41(9)	$C_{16} = C_{17} = C_{22} = C_{23}$	1/7.44 (11)
$C_1 = N_1 = C_4 = C_3 I$	40.01(13) -79.75(11)	$C_{10} = C_{17} = C_{22} = C_{23}$	(10)
$C_1 = N_1 = C_4 = C_3 I$	-76.75(11)	$C_{20} = C_{21} = C_{22} = C_{17}$	-0.3(2)
C_{3} N_{1} C_{4} C_{3}	108.51(10)	$C_{20} = C_{21} = C_{22} = C_{23}$	1/8.04(13)
C1 - N1 - C4 - C3	41.16 (10)	C1/-C22-C23-C24	21.81 (17)
$C_{24} - C_{3} - C_{4} - N_{1}$	-142.90(9)	$C_{21} = C_{22} = C_{23} = C_{24}$	-157.09(12)
C16-C3-C4-N1	96.87 (10)	$C_{22} = C_{23} = C_{24} = C_{3}$	-53.54 (14)
C2—C3—C4—N1	-18.23(10)	C16-C3-C24-C23	55.80 (13)
$C_{24} - C_{3} - C_{4} - C_{25}$	92.34 (12)	$C_2 - C_3 - C_2 - C_{23}$	176.56 (10)
C16—C3—C4—C25	-27.88 (13)	C4—C3—C24—C23	-65.12 (13)
C2—C3—C4—C25	-142.98 (9)	N1—C4—C25—C26	-61.43 (16)
C24—C3—C4—C31	-24.43 (13)	C31—C4—C25—C26	-178.86 (12)
C16—C3—C4—C31	-144.66 (9)	C3—C4—C25—C26	58.47 (16)
C2—C3—C4—C31	100.24 (10)	N1—C4—C25—C30	117.98 (10)
C1—C2—C6—C7	-42.55 (17)	C31—C4—C25—C30	0.55 (11)
C3—C2—C6—C7	81.16 (15)	C3—C4—C25—C30	-122.12 (10)
C1—C2—C6—C15	140.16 (12)	C30—C25—C26—C27	2.18 (17)
C3—C2—C6—C15	-96.14 (13)	C4—C25—C26—C27	-178.46 (12)
C15—C6—C7—C8	-0.5 (2)	C25—C26—C27—C28	-0.6(2)
C2—C6—C7—C8	-177.84 (14)	C26—C27—C28—C29	-1.2 (2)
C6—C7—C8—C9	2.2 (3)	C27—C28—C29—C30	1.3 (2)
C7—C8—C9—C10	-1.3 (3)	C28—C29—C30—C25	0.3 (2)
C8—C9—C10—C11	178.36 (16)	C28—C29—C30—N2	179.84 (13)
C8—C9—C10—C15	-1.2 (2)	C26—C25—C30—C29	-2.08 (18)
C9—C10—C11—C12	178.86 (16)	C4—C25—C30—C29	178.42 (11)
C15-C10-C11-C12	-1.6 (2)	C26—C25—C30—N2	178.34 (10)
C10-C11-C12-C13	-0.3 (3)	C4—C25—C30—N2	-1.16 (13)
C11—C12—C13—C14	1.7 (3)	C31—N2—C30—C29	-178.19 (13)
C12—C13—C14—C15	-1.1 (3)	C32—N2—C30—C29	7.8 (2)
C13—C14—C15—C10	-0.9(2)	C31—N2—C30—C25	1.36 (14)
C13—C14—C15—C6	177.94 (14)	C32—N2—C30—C25	-172.66 (11)
C9—C10—C15—C14	-178.30 (13)	C30—N2—C31—O2	-177.80 (12)
C11—C10—C15—C14	2.11 (19)	C32—N2—C31—O2	-3.8 (2)
C9—C10—C15—C6	2.82 (19)	C30—N2—C31—C4	-0.96 (13)

C11 C10 C15 C6	-17676(12)	C_{22} N2 C_{21} C_4	172.07(11)
	-1/0.70(12)	$C_{32} = N_2 = C_{31} = C_4$	1/3.07 (11)
C7—C6—C15—C14	179.24 (13)	N1—C4—C31—O2	57.84 (15)
C2C6C15C14	-3.40 (18)	C25—C4—C31—O2	177.03 (12)
C7—C6—C15—C10	-1.96 (18)	C3—C4—C31—O2	-56.34 (15)
C2C6C15C10	175.39 (11)	N1-C4-C31-N2	-118.95 (10)
C24—C3—C16—O1	151.83 (12)	C25—C4—C31—N2	0.25 (11)
C2-C3-C16-O1	27.41 (15)	C3—C4—C31—N2	126.88 (10)
C4—C3—C16—O1	-84.06 (13)	C31—N2—C32—C33	-103.09 (15)
C24—C3—C16—C17	-29.45 (13)	C30—N2—C32—C33	70.17 (16)
C2-C3-C16-C17	-153.87 (10)	N2-C32-C33-O3	57.18 (17)
C4—C3—C16—C17	94.66 (11)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 phenyl ring.

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C26—H26…O1	0.93	2.54	3.198 (2)	128
C24—H24 <i>A</i> ···O2	0.97	2.42	3.098 (2)	127
C14—H14…O1	0.93	2.59	3.394 (2)	145
C2—H2…O1	0.98	2.21	2.764 (2)	115
C1—H1 <i>B</i> ···O2	0.97	2.40	3.020 (2)	121
O3—H3…O2 ⁱ	0.82	2.03	2.830(1)	164
C20—H20··· <i>Cg</i> 1 ⁱⁱ	0.93	2.71	3.603 (2)	161

Symmetry codes: (i) -x, -y, -z; (ii) -x, -y, -z+1.